Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38562866

RESUMEN

Pseudomonas aeruginosa is an opportunistic pathogen that thrives in environments associated with human activity, including soil and water altered by agriculture or pollution. Because L-lactate is a significant product of plant and animal metabolism, it is available to serve as a carbon source for P. aeruginosa in the diverse settings it inhabits. Here, we evaluate P. aeruginosa's production and use of its redundant L-lactate dehydrogenases, termed LldD and LldA. We confirm that the protein LldR represses lldD and identify a new transcription factor, called LldS, that activates lldA; these distinct regulators and the genomic contexts of lldD and lldA contribute to their differential expression. We demonstrate that the lldD and lldA genes are conditionally controlled in response to lactate isomers as well as to glycolate and - hydroxybutyrate, which, like lactate, are -hydroxycarboxylates. We also show that lldA is induced when iron availability is low. Our examination of lldD and lldA expression across depth in biofilms indicates a complex pattern that is consistent with the effects of glycolate production, iron availability, and cross-regulation on enzyme preference. Finally, macrophage infection assays revealed that both lldD and lldA contribute to persistence within host cells, underscoring the potential role of L-lactate as a carbon source during P. aeruginosa-eukaryote interactions. Together, these findings help us understand the metabolism of a key resource that may promote P. aeruginosa's success as a resident of contaminated environments and animal hosts.

2.
PLoS Biol ; 22(2): e3002205, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38300958

RESUMEN

Cells must access resources to survive, and the anatomy of multicellular structures influences this access. In diverse multicellular eukaryotes, resources are provided by internal conduits that allow substances to travel more readily through tissue than they would via diffusion. Microbes growing in multicellular structures, called biofilms, are also affected by differential access to resources and we hypothesized that this is influenced by the physical arrangement of the cells. In this study, we examined the microanatomy of biofilms formed by the pathogenic bacterium Pseudomonas aeruginosa and discovered that clonal cells form striations that are packed lengthwise across most of a mature biofilm's depth. We identified mutants, including those defective in pilus function and in O-antigen attachment, that show alterations to this lengthwise packing phenotype. Consistent with the notion that cellular arrangement affects access to resources within the biofilm, we found that while the wild type shows even distribution of tested substrates across depth, the mutants show accumulation of substrates at the biofilm boundaries. Furthermore, we found that altered cellular arrangement within biofilms affects the localization of metabolic activity, the survival of resident cells, and the susceptibility of subpopulations to antibiotic treatment. Our observations provide insight into cellular features that determine biofilm microanatomy, with consequences for physiological differentiation and drug sensitivity.


Asunto(s)
Antibacterianos , Infecciones por Pseudomonas , Humanos , Antibacterianos/farmacología , Pseudomonas aeruginosa/metabolismo , Biopelículas , Infecciones por Pseudomonas/microbiología , Fimbrias Bacterianas
3.
J Bacteriol ; 206(1): e0027623, 2024 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-38169296

RESUMEN

Many bacterial histidine kinases work in two-component systems that combine into larger multi-kinase networks. NahK is one of the kinases in the GacS Multi-Kinase Network (MKN), which is the MKN that controls biofilm regulation in the opportunistic pathogen Pseudomonas aeruginosa. This network has also been associated with regulating many virulence factors P. aeruginosa secretes to cause disease. However, the individual role of each kinase is unknown. In this study, we identify NahK as a novel regulator of the phenazine pyocyanin (PYO). Deletion of nahK leads to a fourfold increase in PYO production, almost exclusively through upregulation of phenazine operon two (phz2). We determined that this upregulation is due to mis-regulation of all P. aeruginosa quorum-sensing (QS) systems, with a large upregulation of the Pseudomonas quinolone signal system and a decrease in production of the acyl-homoserine lactone-producing system, las. In addition, we see differences in expression of quorum-sensing inhibitor proteins that align with these changes. Together, these data contribute to understanding how the GacS MKN modulates QS and virulence and suggest a mechanism for cell density-independent regulation of quorum sensing. IMPORTANCE Pseudomonas aeruginosa is a Gram-negative bacterium that establishes biofilms as part of its pathogenicity. P. aeruginosa infections are associated with nosocomial infections. As the prevalence of multi-drug-resistant P. aeruginosa increases, it is essential to understand underlying virulence molecular mechanisms. Histidine kinase NahK is one of several kinases in P. aeruginosa implicated in biofilm formation and dispersal. Previous work has shown that the nitric oxide sensor, NosP, triggers biofilm dispersal by inhibiting NahK. The data presented here demonstrate that NahK plays additional important roles in the P. aeruginosa lifestyle, including regulating bacterial communication mechanisms such as quorum sensing. These effects have larger implications in infection as they affect toxin production and virulence.


Asunto(s)
Biopelículas , Piocianina , Histidina Quinasa/genética , Histidina Quinasa/metabolismo , Percepción de Quorum , Factores de Virulencia/metabolismo , Bacterias/metabolismo , Pseudomonas aeruginosa/metabolismo , Proteínas Bacterianas/metabolismo , Antibacterianos/farmacología
4.
mBio ; 15(1): e0292623, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38112469

RESUMEN

IMPORTANCE: Cyanide is an inhibitor of heme-copper oxidases, which are required for aerobic respiration in all eukaryotes and many prokaryotes. This fast-acting poison can arise from diverse sources, but mechanisms by which bacteria sense it are poorly understood. We investigated the regulatory response to cyanide in the pathogenic bacterium Pseudomonas aeruginosa, which produces cyanide as a virulence factor. Although P. aeruginosa has the capacity to produce a cyanide-resistant oxidase, it relies primarily on heme-copper oxidases and even makes additional heme-copper oxidase proteins specifically under cyanide-producing conditions. We found that the protein MpaR controls expression of cyanide-inducible genes in P. aeruginosa and elucidated the molecular details of this regulation. MpaR contains a DNA-binding domain and a domain predicted to bind pyridoxal phosphate (vitamin B6), a compound that is known to react spontaneously with cyanide. These observations provide insight into the understudied phenomenon of cyanide-dependent regulation of gene expression in bacteria.


Asunto(s)
Oxidorreductasas , Pseudomonas aeruginosa , Pseudomonas aeruginosa/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Cianuros/metabolismo , Respiración , Biopelículas , Hemo/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
5.
Proc Natl Acad Sci U S A ; 120(43): e2313208120, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37847735

RESUMEN

Within biofilms, gradients of electron acceptors such as oxygen stimulate the formation of physiological subpopulations. This heterogeneity can enable cross-feeding and promote drug resilience, features of the multicellular lifestyle that make biofilm-based infections difficult to treat. The pathogenic bacterium Pseudomonas aeruginosa produces pigments called phenazines that can support metabolic activity in hypoxic/anoxic biofilm subzones, but these compounds also include methylated derivatives that are toxic to their producer under some conditions. In this study, we uncover roles for the global regulators RpoS and Hfq/Crc in controlling the beneficial and detrimental effects of methylated phenazines in biofilms. Our results indicate that RpoS controls phenazine methylation by modulating activity of the carbon catabolite repression pathway, in which the Hfq/Crc complex inhibits translation of the phenazine methyltransferase PhzM. We find that RpoS indirectly inhibits expression of CrcZ, a small RNA that binds to and sequesters Hfq/Crc, specifically in the oxic subzone of P. aeruginosa biofilms. Deletion of rpoS or crc therefore leads to overproduction of methylated phenazines, which we show leads to increased metabolic activity-an apparent beneficial effect-in hypoxic/anoxic subpopulations within biofilms. However, we also find that under specific conditions, biofilms lacking RpoS and/or Crc show increased sensitivity to phenazines indicating that the increased metabolic activity in these mutants comes at a cost. Together, these results suggest that complex regulation of PhzM allows P. aeruginosa to simultaneously exploit the benefits and limit the toxic effects of methylated phenazines.


Asunto(s)
Fenazinas , ARN , Metilación , Fenazinas/farmacología , ARN/metabolismo , Biopelículas , Pseudomonas aeruginosa/metabolismo , Proteínas Bacterianas/metabolismo
6.
Microbiol Res ; 277: 127498, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37776579

RESUMEN

The ability of many bacteria to form biofilms contributes to their resilience and makes infections more difficult to treat. Biofilm growth leads to the formation of internal oxygen gradients, creating hypoxic subzones where cellular reducing power accumulates, and metabolic activities can be limited. The pathogen Pseudomonas aeruginosa counteracts the redox imbalance in the hypoxic biofilm subzones by producing redox-active electron shuttles (phenazines) and by secreting extracellular matrix, leading to an increased surface area-to-volume ratio, which favors gas exchange. Matrix production is regulated by the second messenger bis-(3',5')-cyclic-dimeric-guanosine monophosphate (c-di-GMP) in response to different environmental cues. RmcA (Redox modulator of c-di-GMP) from P. aeruginosa is a multidomain phosphodiesterase (PDE) that modulates c-di-GMP levels in response to phenazine availability. RmcA can also sense the fermentable carbon source arginine via a periplasmic domain, which is linked via a transmembrane domain to four cytoplasmic Per-Arnt-Sim (PAS) domains followed by a diguanylate cyclase (DGC) and a PDE domain. The biochemical characterization of the cytoplasmic portion of RmcA reported in this work shows that the PAS domain adjacent to the catalytic domain tunes RmcA PDE activity in a redox-dependent manner, by differentially controlling protein conformation in response to FAD or FADH2. This redox-dependent mechanism likely links the redox state of phenazines (via FAD/FADH2 ratio) to matrix production as indicated by a hyperwrinkling phenotype in a macrocolony biofilm assay. This study provides insights into the role of RmcA in transducing cellular redox information into a structural response of the biofilm at the population level. Conditions of resource (i.e. oxygen and nutrient) limitation arise during chronic infection, affecting the cellular redox state and promoting antibiotic tolerance. An understanding of the molecular linkages between condition sensing and biofilm structure is therefore of crucial importance from both biological and engineering standpoints.


Asunto(s)
Proteínas de Escherichia coli , Pseudomonas aeruginosa , Pseudomonas aeruginosa/metabolismo , GMP Cíclico/metabolismo , Biopelículas , Proteínas de Escherichia coli/genética , Polímeros/metabolismo , Fenazinas/metabolismo , Oxígeno , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica
7.
bioRxiv ; 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37645902

RESUMEN

Cells must access resources to survive, and the anatomy of multicellular structures influences this access. In diverse multicellular eukaryotes, resources are provided by internal conduits that allow substances to travel more readily through tissue than they would via diffusion. Microbes growing in multicellular structures, called biofilms, are also affected by differential access to resources and we hypothesized that this is influenced by the physical arrangement of the cells. In this study, we examined the microanatomy of biofilms formed by the pathogenic bacterium Pseudomonas aeruginosa and discovered that clonal cells form striations that are packed lengthwise across most of a mature biofilm's depth. We identified mutants, including those defective in pilus function and in O-antigen attachment, that show alterations to this lengthwise packing phenotype. Consistent with the notion that cellular arrangement affects access to resources within the biofilm, we found that while the wild type shows even distribution of tested substrates across depth, the mutants show accumulation of substrates at the biofilm boundaries. Furthermore, we found that altered cellular arrangement within biofilms affects the localization of metabolic activity, the survival of resident cells, and the susceptibility of subpopulations to antibiotic treatment. Our observations provide insight into cellular features that determine biofilm microanatomy, with consequences for physiological differentiation and drug sensitivity.

8.
bioRxiv ; 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37398129

RESUMEN

Pseudomonas aeruginosa is a common, biofilm-forming pathogen that exhibits complex pathways of redox metabolism. It produces four different types of terminal oxidases for aerobic respiration, and for one of these-the cbb3-type terminal oxidases-it has the capacity to produce at least 16 isoforms encoded by partially redundant operons. It also produces small-molecule virulence factors that interact with the respiratory chain, including the poison cyanide. Previous studies had indicated a role for cyanide in activating expression of an "orphan" terminal oxidase subunit gene called ccoN4 and that the product contributes to P. aeruginosa cyanide resistance, fitness in biofilms, and virulence-but the mechanisms underlying this process had not been elucidated. Here, we show that the regulatory protein MpaR, which is predicted to be a pyridoxal phosphate-binding transcription factor and is encoded just upstream of ccoN4, controls ccoN4 expression in response to endogenous cyanide. Paradoxically, we find that cyanide production is required to support CcoN4's contribution to respiration in biofilms. We identify a palindromic motif required for cyanide- and MpaR-dependent expression of ccoN4 and co-expressed, adjacent loci. We also characterize the regulatory logic of this region of the chromosome. Finally, we identify residues in the putative cofactor-binding pocket of MpaR that are required for ccoN4 expression. Together, our findings illustrate a novel scenario in which the respiratory toxin cyanide acts as a signal to control gene expression in a bacterium that produces the compound endogenously.

9.
bioRxiv ; 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37333196

RESUMEN

Light sheet fluorescence microscopy (LSFM) is a widely used imaging technique for living and large cleared samples. However, high-performance LSFM systems are often prohibitively expensive and not easily scalable for high-throughput applications. Here, we introduce a cost-effective, scalable, and versatile high-resolution imaging framework, called projected Light Sheet Microscopy (pLSM), which repurposes readily available off-the-shelf consumer-grade components and an over-the-network control architecture to achieve high-resolution imaging of living and cleared samples. We extensively characterize the pLSM framework and showcase its capabilities through high-resolution, multi-color imaging and quantitative analysis of mouse and post-mortem human brain samples cleared using various techniques. Moreover, we show the applicability of pLSM for high-throughput molecular phenotyping of human induced pluripotent cells (iPSC)-derived brain and vessel organoids. Additionally, we utilized pLSM for comprehensive live imaging of bacterial pellicle biofilms at the air-liquid interface, uncovering their intricate layered architecture and diverse cellular dynamics across different depths. Overall, the pLSM framework has the potential to further democratize LSFM by making high-resolution light sheet microscopy more accessible and scalable.

10.
Anal Chem ; 95(12): 5285-5292, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36920847

RESUMEN

Scanning ion conductance microscopy (SICM) is a topographic imaging technique capable of probing biological samples in electrolyte conditions. SICM enhancements have enabled surface charge detection based on voltage-dependent signals. Here, we show how the hopping mode SICM method (HP-SICM) can be used for rapid and minimally invasive surface charge mapping. We validate our method usingPseudomonas aeruginosaPA14 (PA) cells and observe a surface charge density of σPA = -2.0 ± 0.45 mC/m2 that is homogeneous within the ∼80 nm lateral scan resolution. This biological surface charge is detected from at least 1.7 µm above the membrane (395× the Debye length), and the long-range charge detection is attributed to electroosmotic amplification. We show that imaging with a nanobubble-plugged probe reduces perturbation of the underlying sample. We extend the technique to PA biofilms and observe a charge density exceeding -20 mC/m2. We use a solid-state calibration to quantify surface charge density and show that HP-SICM cannot be quantitatively described by a steady-state finite element model. This work contributes to the body of scanning probe methods that can uniquely contribute to microbiology and cellular biology.


Asunto(s)
Microscopía , Pseudomonas aeruginosa , Microscopía/métodos , Cintigrafía , Iones , Movimiento
11.
bioRxiv ; 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36824979

RESUMEN

Within biofilms, gradients of electron acceptors such as oxygen stimulate the formation of physiological subpopulations. This heterogeneity can enable cross-feeding and promote drug resilience, features of the multicellular lifestyle that make biofilm-based infections difficult to treat. The pathogenic bacterium Pseudomonas aeruginosa produces pigments called phenazines that can support metabolic activity in hypoxic/anoxic biofilm subzones, but these compounds also include methylated derivatives that are toxic to their producer under some conditions. Here, we uncover roles for the global regulators RpoS and Hfq/Crc in controlling the beneficial and detrimental effects of methylated phenazines in biofilms. Our results indicate that RpoS controls phenazine methylation by modulating activity of the carbon catabolite repression pathway, in which the Hfq/Crc complex inhibits translation of the phenazine methyltransferase PhzM. We find that RpoS indirectly inhibits expression of CrcZ, a small RNA that binds to and sequesters Hfq/Crc, specifically in the oxic subzone of P. aeruginosa biofilms. Deletion of rpoS or crc therefore leads to overproduction of methylated phenazines, which we show leads to increased metabolic activity-an apparent beneficial effect-in hypoxic/anoxic subpopulations within biofilms. However, we also find that biofilms lacking Crc show increased sensitivity to an exogenously added methylated phenazine, indicating that the increased metabolic activity in this mutant comes at a cost. Together, these results suggest that complex regulation of PhzM allows P. aeruginosa to simultaneously exploit the benefits and limit the toxic effects of methylated phenazines.

12.
mBio ; 13(4): e0140722, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35938725

RESUMEN

Sunlight drives phototrophic metabolism, which affects redox conditions and produces substrates for nonphototrophs. These environmental parameters fluctuate daily due to Earth's rotation, and nonphototrophic organisms can therefore benefit from the ability to respond to, or even anticipate, such changes. Circadian rhythms, such as daily changes in body temperature, in host organisms can also affect local conditions for colonizing bacteria. Here, we investigated the effects of light/dark and temperature cycling on biofilms of the opportunistic pathogen Pseudomonas aeruginosa PA14. We grew biofilms in the presence of a respiratory indicator dye and found that enhanced dye reduction occurred in biofilm zones that formed during dark intervals and at lower temperatures. This pattern formation occurred with cycling of blue, red, or far-red light, and a screen of mutants representing potential sensory proteins identified two with defects in pattern formation, specifically under red light cycling. We also found that the physiological states of biofilm subzones formed under specific light and temperature conditions were retained during subsequent condition cycling. Light/dark and temperature cycling affected expression of genes involved in primary metabolic pathways and redox homeostasis, including those encoding electron transport chain components. Consistent with this, we found that cbb3-type oxidases contribute to dye reduction under light/dark cycling conditions. Together, our results indicate that cyclic changes in light exposure and temperature have lasting effects on redox metabolism in biofilms formed by a nonphototrophic, pathogenic bacterium. IMPORTANCE Organisms that do not obtain energy from light can nevertheless be affected by daily changes in light exposure. Many aspects of animal and fungal physiology fluctuate in response to these changes, including body temperature and the activities of antioxidant and other redox enzymes that play roles in metabolism. Whether redox metabolism is affected by light/dark and temperature cycling in bacteria that colonize such circadian organisms has not been studied in detail. Here, we show that growth under light/dark and temperature cycling lead to rhythmic changes in redox metabolism in Pseudomonas aeruginosa and identify proteins involved in this response. P. aeruginosa is a major cause of health care-associated infections and is designated a serious threat by the CDC due to its recalcitrance during treatments. Our findings have the potential to inform therapeutic strategies that incorporate controlled light exposure or consider P. aeruginosa's responses to conditions in the host.


Asunto(s)
Electrones , Pseudomonas aeruginosa , Animales , Biopelículas , Oxidación-Reducción , Pseudomonas aeruginosa/metabolismo , Temperatura
13.
Nat Rev Microbiol ; 20(10): 593-607, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35149841

RESUMEN

Historically, appreciation for the roles of resource gradients in biology has fluctuated inversely to the popularity of genetic mechanisms. Nevertheless, in microbiology specifically, widespread recognition of the multicellular lifestyle has recently brought new emphasis to the importance of resource gradients. Most microorganisms grow in assemblages such as biofilms or spatially constrained communities with gradients that influence, and are influenced by, metabolism. In this Review, we discuss examples of gradient formation and physiological differentiation in microbial assemblages growing in diverse settings. We highlight consequences of physiological heterogeneity in microbial assemblages, including division of labour and increased resistance to stress. Our impressions of microbial behaviour in various ecosystems are not complete without complementary maps of the chemical and physical geographies that influence cellular activities. A holistic view, incorporating these geographies and the genetically encoded functions that operate within them, will be essential for understanding microbial assemblages in their many roles and potential applications.


Asunto(s)
Biopelículas , Ecosistema
14.
J Bacteriol ; 204(2): e0043321, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34606374

RESUMEN

Cyclic diguanylate (c-di-GMP) signal transduction systems provide bacteria with the ability to sense changing cell status or environmental conditions and then execute suitable physiological and social behaviors in response. In this review, we provide a comprehensive census of the stimuli and receptors that are linked to the modulation of intracellular c-di-GMP. Emerging evidence indicates that c-di-GMP networks sense light, surfaces, energy, redox potential, respiratory electron acceptors, temperature, and structurally diverse biotic and abiotic chemicals. Bioinformatic analysis of sensory domains in diguanylate cyclases and c-di-GMP-specific phosphodiesterases as well as the receptor complexes associated with them reveals that these functions are linked to a diverse repertoire of protein domain families. We describe the principles of stimulus perception learned from studying these modular sensory devices, illustrate how they are assembled in varied combinations with output domains, and summarize a system for classifying these sensor proteins based on their complexity. Biological information processing via c-di-GMP signal transduction not only is fundamental to bacterial survival in dynamic environments but also is being used to engineer gene expression circuitry and synthetic proteins with à la carte biochemical functionalities.


Asunto(s)
GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Liasas de Fósforo-Oxígeno/metabolismo , Transducción de Señal/fisiología , Proteínas Bacterianas/metabolismo , Biología Computacional , GMP Cíclico/genética , GMP Cíclico/metabolismo , Regulación Bacteriana de la Expresión Génica , Dominios Proteicos , Transducción de Señal/genética
15.
mBio ; 12(5): e0176321, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34544277

RESUMEN

A recent workshop titled "Developing Models to Study Polymicrobial Infections," sponsored by the Dartmouth Cystic Fibrosis Center (DartCF), explored the development of new models to study the polymicrobial infections associated with the airways of persons with cystic fibrosis (CF). The workshop gathered 35+ investigators over two virtual sessions. Here, we present the findings of this workshop, summarize some of the challenges involved with developing such models, and suggest three frameworks to tackle this complex problem. The frameworks proposed here, we believe, could be generally useful in developing new model systems for other infectious diseases. Developing and validating new approaches to study the complex polymicrobial communities in the CF airway could open windows to new therapeutics to treat these recalcitrant infections, as well as uncovering organizing principles applicable to chronic polymicrobial infections more generally.


Asunto(s)
Coinfección/complicaciones , Fibrosis Quística/complicaciones , Modelos Biológicos , Infección Persistente/complicaciones , Animales , Biopelículas , Humanos , Interacciones Microbianas , Sistema Respiratorio/microbiología
16.
Nat Commun ; 12(1): 4613, 2021 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-34326342

RESUMEN

R-bodies are long, extendable protein polymers formed in the cytoplasm of some bacteria; they are best known for their role in killing of paramecia by bacterial endosymbionts. Pseudomonas aeruginosa PA14, an opportunistic pathogen of diverse hosts, contains genes (referred to as the reb cluster) with potential to confer production of R-bodies and that have been implicated in virulence. Here, we show that products of the PA14 reb cluster associate with R-bodies and control stochastic expression of R-body structural genes. PA14 expresses reb genes during colonization of plant and nematode hosts, and R-body production is required for full virulence in nematodes. Analyses of nematode ribosome content and immune response indicate that P. aeruginosa R-bodies act via a mechanism involving ribosome cleavage and translational inhibition. Our observations provide insight into the biology of R-body production and its consequences during P. aeruginosa infection.


Asunto(s)
Proteínas Bacterianas/metabolismo , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidad , Factores de Virulencia/metabolismo , Animales , Proteínas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Caenorhabditis elegans , Filogenia , Infecciones por Pseudomonas/genética , Infecciones por Pseudomonas/metabolismo , Pseudomonas aeruginosa/citología , Pseudomonas aeruginosa/genética , Virulencia , Factores de Virulencia/genética
17.
Analyst ; 146(4): 1346-1354, 2021 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-33393560

RESUMEN

The opportunistic pathogen Pseudomonas aeruginosa (P. aeruginosa) produces several redox-active phenazine metabolites, including pyocyanin (PYO) and phenazine-1-carboxamide (PCN), which are electron carrier molecules that also aid in virulence. In particular, PYO is an exclusive metabolite produced by P. aeruginosa, which acts as a virulence factor in hospital-acquired infections and is therefore a good biomarker for identifying early stage colonization by this pathogen. Here, we describe the use of nanopore electrode arrays (NEAs) exhibiting metal-insulator-metal ring electrode architectures for enhanced detection of these phenazine metabolites. The size of the nanopores allows phenazine metabolites to freely diffuse into the interior and access the working electrodes, while the bacteria are excluded. Consequently, highly efficient redox cycling reactions in the NEAs can be accessed by free diffusion unhindered by the presence of bacteria. This strategy yields low limits of detection, i.e. 10.5 and 20.7 nM for PYO and PCN, respectively, values far below single molecule pore occupancy, e.g. at 10.5 nM 〈npore〉∼ 0.082 per nanopore - a limit which reflects the extraordinary signal amplification in the NEAs. Furthermore, experiments that compared results from minimal medium and rich medium show that P. aeruginosa produces the same types of phenazine metabolites even though growth rates and phenazine production patterns differ in these two media. The NEA measurement strategy developed here should be useful as a diagnostic for pathogens generally and for understanding metabolism in clinically important microbial communities.


Asunto(s)
Nanoporos , Pseudomonas aeruginosa , Electrodos , Oxidación-Reducción , Fenazinas , Pseudomonas aeruginosa/metabolismo , Piocianina
18.
Trends Microbiol ; 28(9): 732-743, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32781027

RESUMEN

Cells in assemblages differentiate and perform distinct roles. Though many pathways of differentiation are understood at the molecular level in multicellular eukaryotes, the elucidation of similar processes in bacterial assemblages is recent and ongoing. Here, we discuss examples of bacterial differentiation, focusing on cases in which distinct metabolisms coexist and those that exhibit cross-feeding, with one subpopulation producing substrates that are metabolized by a second subpopulation. We describe several studies of single-species systems, then segue to studies of multispecies metabolic heterogeneity and cross-feeding in the clinical setting. Many of the studies described exemplify the application of new techniques and modeling approaches that provide insights into metabolic interactions relevant for bacterial growth outside the laboratory.


Asunto(s)
Bacterias/crecimiento & desarrollo , Bacterias/metabolismo , Biopelículas/crecimiento & desarrollo , Redes y Vías Metabólicas , Interacciones Microbianas , Fenómenos Fisiológicos Bacterianos , Farmacorresistencia Bacteriana , Microfluídica/métodos
19.
Nat Methods ; 17(8): 844-851, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32601425

RESUMEN

Understanding metabolism is indispensable in unraveling the mechanistic basis of many physiological and pathological processes. However, in situ metabolic imaging tools are still lacking. Here we introduce a framework for mid-infrared (MIR) metabolic imaging by coupling the emerging high-information-throughput MIR microscopy with specifically designed IR-active vibrational probes. We present three categories of small vibrational tags including azide bond, 13C-edited carbonyl bond and deuterium-labeled probes to interrogate various metabolic activities in cells, small organisms and mice. Two MIR imaging platforms are implemented including broadband Fourier transform infrared microscopy and discrete frequency infrared microscopy with a newly incorporated spectral region (2,000-2,300 cm-1). Our technique is uniquely suited to metabolic imaging with high information throughput. In particular, we performed single-cell metabolic profiling including heterogeneity characterization, and large-area metabolic imaging at tissue or organ level with rich spectral information.


Asunto(s)
Análisis de la Célula Individual/métodos , Espectrofotometría Infrarroja/métodos , Animales , Encéfalo/crecimiento & desarrollo , Caenorhabditis elegans , Ensayos Analíticos de Alto Rendimiento , Ratones , Neoplasias , Microscopía Óptica no Lineal , Vibración
20.
J Bacteriol ; 202(14)2020 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-32366589

RESUMEN

Light is known to trigger regulatory responses in diverse organisms, including slime molds, animals, plants, and phototrophic bacteria. However, light-dependent processes in nonphototrophic bacteria, and those of pathogens in particular, have received comparatively little research attention. In this study, we examined the impact of light on multicellular development in Pseudomonas aeruginosa, a leading cause of biofilm-based bacterial infections. We grew P. aeruginosa strain PA14 in a colony morphology assay and found that growth under prolonged exposure to low-intensity blue light inhibited biofilm matrix production and thereby the formation of vertical biofilm structures (i.e., "wrinkles"). Light-dependent inhibition of biofilm wrinkling was correlated with low levels of cyclic di-GMP (c-di-GMP), consistent with the role of this signal in stimulating matrix production. A screen of enzymes with the potential to catalyze c-di-GMP synthesis or degradation identified c-di-GMP phosphodiesterases that contribute to light-dependent inhibition of biofilm wrinkling. One of these, RmcA, was previously characterized by our group for its role in mediating the effect of redox-active P. aeruginosa metabolites called phenazines on biofilm wrinkle formation. Our results suggest that an RmcA sensory domain that is predicted to bind a flavin cofactor is involved in light-dependent inhibition of wrinkling. Together, these findings indicate that P. aeruginosa integrates information about light exposure and redox state in its regulation of biofilm development.IMPORTANCE Light exposure tunes circadian rhythms, which modulate the immune response and affect susceptibility to infection in plants and animals. Though molecular responses to light are defined for model plant and animal hosts, analogous pathways that function in bacterial pathogens are understudied. We examined the response to light exposure in biofilms (matrix-encased multicellular assemblages) of the nonphotosynthetic bacterium Pseudomonas aeruginosa We found that light at intensities that are not harmful to human cells inhibited biofilm maturation via effects on cellular signals. Because biofilm formation is a critical factor in many types of P. aeruginosa infections, including burn wound infections that may be exposed to light, these effects could be relevant for pathogenicity.


Asunto(s)
Biopelículas/efectos de la radiación , GMP Cíclico/análogos & derivados , Pseudomonas aeruginosa/fisiología , Pseudomonas aeruginosa/efectos de la radiación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , GMP Cíclico/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de la radiación , Luz , Oxidación-Reducción , Fenazinas/metabolismo , Pseudomonas aeruginosa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...